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Simple model of evolution with variable system size
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~Received 9 July 1997!

A simple model of biological extinction with variable system size that exhibits a power-law distribution of
extinction event sizes is presented. The model is a generalization of a model recently introduced by Newman
@Proc. R. Soc. London Ser. B263, 1605 ~1996!#. Both analytical and numerical analysis show that the
exponent of the power-law distribution depends only marginally on the growth rateg at which new species
enter the system and is equal to that of the original model in the limitg→`. A critical growth rategc , below
which the system dies out, can be found. Under these model assumptions stable ecosystems can only exist if
the regrowth of species is sufficiently fast.@S1063-651X~97!09912-1#

PACS number~s!: 87.10.1e, 05.40.1j
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The fact that extinction events seem to be episodic on
scales, as noted by Raup@1#, has aroused much interest in th
last few years. Throughout the history of life on Earth the
have been many small extinction events, but very big o
have happened only rarely. A histogram of the frequency
extinction events of different sizes indicates a power-law d
tribution p(s)5s2t, wheres denotes the number of specie
that go extinct in one event andp(s) denotes the frequenc
of events of sizes.

There are two mechanisms to explain mass extinctio
On the one hand, it is argued that coevolution can drive la
proportions of an ecosystem into extinction and produce
tinction events on all scales. Ecosystems might drive the
selves into a critical state in which a small change~e.g., the
mutation of a single species! can trigger an ‘‘avalanche’’ tha
may span the whole system. For this kind of dynamic B
et al. @2# have coined the name self-organized critical
~SOC!. Several simple models of evolution exhibiting SO
have been proposed, among them models by Kauffman
Johnsen@3#, Bak and Sneppen@4#, and Manrubia and Pac
zuski @5#.

On the other hand, it is argued that mass extinctions
their origin in external influences. That situation is mode
by some recent work of Newman@6#. He used a model be
longing to the new class of so-called ‘‘coherent noise’’ mo
els recently introduced by Newman and Sneppen@7#. These
models are clearly not SOC but they nevertheless sho
power-law distribution of avalanche sizes. Newman co
pared his model with the analysis of the fossil record p
formed by Raup. The exponentt close to 2 that arises in thi
model is in good agreement with the fossil record. Th
Newman came to the conclusion that there is no evidence
SOC as the major driving force for extinction.

It can be generally observed that the majority of the m
els for biological evolution and extinction up to now consi
ered work with a fixed number of species. This is a ma
drawback since it is in clear contrast with the biological
ality. After a major extinction event, the number of spec
in the ecosystem is significantly reduced, and the proces
regrowth of new species can take a long time. The fo
record @8# shows that the process of growth of species
commonly interrupted by extinction events.
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To our knowledge, models with variable system size ha
only been studied by Vandewalle and Auslool@9# and by
Head and Rodgers@10#. But in both cases the models do n
explain the distribution of extinction events seen in the fos
record. The model of Vandewalle and Auslool is a tr
model that grows infinitely, while the model of Head an
Rodgers reaches a steady state in which no major extinct
occur. As far as we know, none of the models with varia
system size up to now considered can explain the distribu
of extinction events seen in the fossil record.

But every mechanism proposed for the explanation
mass extinctions must~i! explain the distribution seen in th
fossil record, and~ii ! face the fact that the number of speci
is not constant, but is reduced significantly after a ma
extinction event.A priori it is not at all clear if a mechanism
producing a certain distribution of extinction events w
show the same distribution when the constraint of a fix
system size is released. Therefore it is very important
study models with variable system size.

We propose here a generalization to the coherent n
model used by Newman, where the refilling of the system
done in finite time. Newman’s model is defined as follow
The system consists ofN species, each possessing a thre
old xi of tolerance against stress, chosen from a probab
distributionpthresh(x). At each time step, a stressh is gener-
ated at random with a distributionpstress(h), and all species
with xi,h are removed from the system and immediate
replaced with new ones. Furthermore, a small fractionf of
the species is chosen at random and given new thresh
That corresponds to a probability off for every species to
undergo spontaneous mutation.

In our model the fraction of species withxi,h is re-
moved permanently from the system, but in every time s
there is some growth of new species.

Note that the generalized model, like the original on
does not include explicitly interaction between speci
There are two reasons to justify this model assumpti
Firstly, previous work@11# has shown that the coherent noi
dynamic is very strong and can dominate interaction
namic. Secondly, the investigation of a model without int
action, which can reproduce important features of the fo
record, helps to clarify the influence of species’ interacti
on mass extinctions.
7128 © 1997 The American Physical Society
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56 7129SIMPLE MODEL OF EVOLUTION WITH VARIABLE . . .
The amount of newly introduced species per time s
should be proportional to the number of already existing s
cies, with some constant of proportionalityg ~the growth
rate!. This gives an unbounded exponential growth, which
in good agreement with the data of Benton@8#. However,
since recourses on Earth are finite, the growth of the spe
must be limited as well. Therefore, we believe it is justifi
to introduce a logistic factor (12N/Nmax), whereNmax is the
maximal number of species that can be sustained with
available resources. With this factor it is possible to wo
with a finite model. A few comments on the fact that
nature thisNmax is probably not constant in time will be
given later.

For the above reasons we want our system to grow
cording to the differential equation

dN

dt
5gNS 12

N

Nmax
D . ~1!

Since our model is discrete, in time as well as in the num
of species, instead of Eq.~1! we use the corresponding di
ference equation

DN~ t1Dt !5
N~ t !Nmaxe

gDt

Nmax1N~ t !~egDt21!
2N~ t !, ~2!

whereDt is one simulation time step~usually set equal to 1!.
As DN has to be an integer, we use the fractional part ofDN
as the probability to round up or down. In the limitg→0
~which corresponds toDt→0) Eq. ~2! reduces to Eq.~1!. In
the limit g→` Eq. ~2! becomesDN5Nmax2N, which
means that our model reduces to the original one in the l
of an infinite growth rate.

Now we can formulate our model: we setDt51. At every
time step, a stress valueh is chosen and all species wit
xi,h are removed. Then, an amountDN of new species is
introduced into the system. Finally, a fractionf of the spe-
cies is assigned new thresholds.

A typical evolution of the system sizeN in time is pre-
sented in Fig. 1. The process of growth of new specie
constantly disrupted by small extinction events. From time
time, bigger events, which disturb the system significan

FIG. 1. The evolution of the system sizeN in time. The param-
eters areg5431025, s50.05, f 51025, andNmax51000 with ex-
ponentially distributed stress.
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occur. A plot of the distribution of extinction events~Fig. 2!
shows a power-law decrease. Variation of the growth ra
over several orders of magnitude does change the expon
only slightly.

We can explain the exponent of the power law by exten
ing the analysis of Sneppen and Newman to our model. T
probability that species leave a small intervaldx of the
time-averaged distribution r̄ (x) is proportional to

@ f 1pmove(x)# r̄ (x), wherepmove(x) is the probability that a
species with thresholdx is hit by stress. Leta be a variable
that measures the ‘‘emptiness’’ of the system, i.e.,a
}(12N/Nmax). The rate at which the intervaldx is repopu-
lated is then proportional to@ f (12a)1ga(12a)#pthresh(x)
in the limit Dt→0. In equilibrium the rates of species’ los
and repopulation balance, and we find the master equatio

@ f 1pmove~x!# r̄ ~x!5@ f ~12 ā !1gā ~12 ā !#pthresh~x!.
~3!

Note that we had to replacea by its time-averaged valueā
and that we can always take the limitDt→0 in the steady
state. After rearranging Eq.~3!, we find

r̄ ~x!5@ f ~12 ā !1gā ~12 ā !#
pthresh~x!

f 1pmove~x!
. ~4!

Equation~4! can be solved if we choose how to normaliz
r̄ (x) and ā . Since we can think of the system as containin
Nmax species at any time step, from which there areN active
andNmax2N dead, it makes sense to normalize the sum ofā

and r̄ (x) to unity, viz.,

15 ā1E r̄ ~x!dx. ~5!

That implies, nevertheless, that we do not normalizer̄ (x) to
unity. Rather,* r̄ (x)dx gives the ratioN̄/Nmax.

FIG. 2. The distribution of extinction events for a system wit
exponentially distributed stress,s50.05 andNmax510 000. The
growth rate is, from bottom to top,g5431025, g50.002,g510.
It can be seen that the power-law behavior does depend only m
ginally on the growth rate. The curves have been rescaled so as
to overlap.



ra
th
d

x-

de

th

t
a
c

es

s
.,

e

-

w-

n
s of
ave
on
old
ts.

edi-
es-
in

al
lues
y
that

to
eds
Fig.
en

fter-
een
cer-
cks
ther

ere
be

t is
is
ne
e

the
t
ear-
e-

ul
the

7130 56CLAUS WILKE AND THOMAS MARTINETZ
For ā we find, apart from the trivial solutionā51, the
solution ā5(A2 f )/g, with

A215E pthresh~x!

f 1pmove~x!
dx. ~6!

For r̄ (x), we find

r̄ ~x!5AS 12
A2 f

g D pthresh~x!

f 1pmove~x!
. ~7!

We thus have the interesting result that apart from the ove
factor 12 ā , which determines the average system size,
shape of r̄ (x) is identical to that found by Sneppen an
Newman. Since only the shaper̄ (x), but not the overall
factor, is responsible for the power-law distribution of e
tinction events~for details see@7#! we find that, within the
time-averaged approximation, the exponentt of the power-
law decrease is exactly the same as in the original mo
even for very smallg.

If we take the limitg→` in Eq. ~7! we can restore the
expression found by Sneppen and Newman, which was to
expected since our model reduces to the original one in
limit. In the region of very smallg, we can read off from Eq.
~7! that the system breaks down at a critical growth ra
gc5A2 f . This is the case when the growth rate is so sm
that the regrowth of species cannot compensate the suc
sive extinction events. Every system withg,gc will even-
tually end up withN50, regardless of the number of speci
at the beginning of the simulation.

For the simulation results presented here we have u
exponentially distributed stress only, i.e
p stress(h)5exp(2h/s)/s. We did simulations withNmax be-
tween 1000 and 10 000. Figure 3 shows the dependenc
the average system sizeN̄ of g. We can clearly see the
breakdown of the system atgc . A measurement of the time
averaged distribution of thresholdsr̄ (x) is presented in Fig.
4. The exponentt of the power-law distribution of extinction
events is found to bet51.960.1 for g510, t52.060.1 for

FIG. 3. The average system sizeN̄ vs the growth rateg. We
used exponentially distributed stress withs50.05 and f 51025.
The solid line is the analytic expression, the points are the sim
tion results.
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g50.002, t52.0560.1 for g5431025 ~for exponentially
distributed stress,s50.05, f 51025, Fig. 2!. The exponent
decreases slightly with increasingg. For g510, we have
already good agreement with the exponent found by Ne
man and Sneppen@7# for g5`, viz., t51.8560.03.

An interesting feature of the original model by Newma
and Sneppen is the existence of aftershocks, a serie
smaller events following a large one. These aftershocks h
their origin in the fact that after a large event the introducti
of new species reduces significantly the mean thresh
value, thus increasing the probability to get further even
Since the existence of aftershocks is a result of the imm
ate refilling of the system after an event, we cannot nec
sarily expect to see aftershocks when the refilling is done
finite time, especially at a small growth rate. Numeric
simulations show that there are aftershocks for larger va
of g, but wheng approachesgc , aftershocks cannot clearl
be identified anymore. The region where this happens is
in which the average system size decreases rapidly withg.
For these values ofg, the typical time the system needs
regrow the amount of species lost in a major event exce
the typical time needed to create a major stress value. In
3, the region in which we do not find aftershocks is betwe
g5gc51.331025 and aboutg5531024. A typical ex-
ample for a series of events in a system withg close togc is
presented in Fig. 5.

Sneppen and Newman argued that the existence of a
shocks might provide a measure to distinguish betw
coherent-noise driven systems and SOC systems. This is
tainly true in the sense that systems exhibiting aftersho
are better candidates for coherent-noise driven systems ra
than for SOC systems. But our simulations show that th
are systems without clear aftershocks that still should
classified as coherent-noise driven.

We have focused on logistic growth since we believe i
suitable for the study of mass extinctions. In principle it
possible to use different types of growth. We have do
some simulations with linear growth, where in every tim
step a fixed amount of new species is introduced into
system, as long asN,Nmax. These simulations indicate tha
the respective type of growth used does not affect the app
ance of a power-law distribution with exponent almost ind

a-

FIG. 4. The time-averaged distributionr̄ (x). The parameters
used areg50.002, s50.05, andf 5531024 with exponentially
distributed stress. The solid line is the analytic expression,
points are the simulation results.
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56 7131SIMPLE MODEL OF EVOLUTION WITH VARIABLE . . .
pendent from the growth rate. But whether aftershocks
pear or not, is indeed dependent on the type of growth
choose. In a system with linear growth aftershocks can
seen clearly even for small growth rates.

If we want to use a coherent noise model with varia
system size as a model of biological evolution, some rema
about the meaning ofNmax are necessary. The fact of allow
ing the regrowth of species in finite time, instead of refillin
the system immediately, represents a first step closer to
ity. But for ecosystems it is certainly not a good assumpt
to keep the maximal system sizeNmax fixed, since the num-
ber of species an ecosystem can contain depends on th
teraction of species themselves. Therefore, a next step c

FIG. 5. A series of extinction events. The parameters used
g5431025, s50.05, andf 5531024 with exponentially distrib-
uted stress. Aftershocks cannot clearly be identified.
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be to changeNmax after every extinction, e.g., up or down b
chance and by an amount proportional to the size of
event. This is motivated by the fact that bigger events
expected to be correlated with a more profound restructu
of the ecosystem, and as simulations show we still fi
power-law distributions with exponentst'2. The behavior
of such a system has a very rich structure with long times
relatively little change~stasis! and sudden bursts of evolu
tionary activity ~punctuated equilibrium!, where a major ex-
tinction event is followed by a regrowth of species to a s
tem size much bigger than the one before the event. Th
found curves of the system sizeN agree qualitatively well
with the fossil record@8#.

We have generalized a coherent noise model to a mo
with variable system size. The most important feature of
herent noise models, the power-law distribution of eve
sizes with an exponent close to 2, does not change unde
generalization. This means that the validity of Newman
approach to explain biological extinction with a cohere
noise model is not affected by the regrowth of species
finite time. An interesting new feature that emerges from
variable system size is the existence of a critical growth r
gc . Systems withg,gc will always end up withN50 after
some time. Therefore in a world in which the regrowth
species is too slow to compensate external influences
stable ecosystems can exist. In the framework of our mo
we conclude that the process of mutation and diversifica
of species at sufficiently high rate is necessary for the sta
ity of life on earth.

We thank Stephan Altmeyer for stimulating discussion
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